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Abstract. Large numbers of ground states of two-dimensional Ising spin glasses with periodic boundary
conditions in both directions are calculated for sizes up to 402. A combination of a genetic algorithm and
Cluster-Exact Approximation is used. For each quenched realization of the bonds up to 40 independent
ground states are obtained. For the infinite system a ground-state energy of e = −1.4015(3) is extrapolated.
The ground-state landscape is investigated using a finite-size scaling analysis of the distribution of overlaps.
The mean-field picture assuming a complex landscape describes the situation better than the droplet-
scaling model, where for the infinite system mainly two ground states exist. Strong evidence is found
that the ground states are not organized in an ultrametric fashion in contrast to previous results for
three-dimensional spin glasses.

PACS. 75.10.Nr Spin glasses and other random models – 75.40.Mg Numerical simulation studies –
02.10.Jf General mathematical systems

1 Introduction

In this work two-dimensional Edwards-Anderson (EA) ±J
spin glasses [1] are investigated. They consist of N spins
σi = ±1, described by the Hamiltonian

H ≡ −
∑
〈i,j〉

Jijσiσj . (1)

The spins are placed on a two-dimensional (d = 2) square
lattice of linear size L with periodic boundary conditions
in both directions. Systems with quenched disorder of
the nearest-neighbor interactions (bonds) are investigated.
Their possible values are Jij = ±1 with equal probability.
A constraint is imposed, so that

∑
〈i,j〉 Jij = 0.

A question which has led to much controversy is,
whether many pure states exist for finite dimensional, i.e.
realistic spin glasses. For the infinite ranged Sherrington-
Kirkpatrik (SK) Ising spin glass [2] this question was an-
swered positively by the replica-symmetry-breaking mean-
field (MF) scheme by Parisi [3]. Additionally this solution
of the SK-model exhibits [4,5] an ultrametric structure:
The distances dαβ between the states do not only satisfy
the triangular inequality dαβ ≤ dαγ+dγβ but the stronger
ultrametric inequality dαβ ≤ max(dαγ , dγβ) as well. For an
introduction to ultrametricity see [6]. Numerical work on
the subject for the SK-model can be found in [7,8].
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A complete different model is proposed by the Droplet
Scaling (DS) theory [9–13]. It suggests that only two pure
states (related by a global flip) exist and that the most rel-
evant excitations are obtained by reversing large domains
of spins (the droplets). Some authors [14] disbelieve that
the MF theory is consistent for realistic spin glasses but
the question about the existence of many pure states is
not answered.

In this work the point is not addressed by investigat-
ing spin glasses at finite temperature, but a different ap-
proach is used: an analysis of ground states is performed.
It is not possible to draw conclusions about the behavior
at finite temperatures rigorously from the ground-state re-
sults. But it seems plausible that the existence of many
pure states implies that between two ground-state config-
urations arbitrary differences are possible. Otherwise two
ground states would only differ by the spin orientations
in some finite domains, which we call a simple ground-
state landscape. This is always possible in the ±J model
because of the discrete structure of the interaction distri-
bution. Such a simple structure was found for example for
the 3d random-field Ising model [15]. It is possible to in-
vent models, which exhibit a broad distribution of overlaps
without having a rich ground-state structure, for example
a ferromagnet with antiperiodic boundary-conditions in
on direction. Since the distribution of bonds in the model
investigated here is totally random, it should not be possi-
ble to explain a broad overlap distribution using a simple
scheme.

Next a short overview about numerical results of finite-
dimensional systems for investigating the low-temperature
behavior are given. In four dimensions the MF picture is
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well established. Even numerical evidence for ultrametric-
ity at finite temperature but below the transition temper-
ature TG was found [16,17].

For three-dimensional systems recently evidences for
the validity of some basic features of the MF picture were
found using simulations at finite temperature [18] and
ground-state calculations [19]. First attempts to find ul-
trametricity by simulation at finite temperature are given
in [20,21]. Evidences for an ultrametric ground-state land-
scape of 3d systems were recently found [22].

The higher-dimensional systems exhibit a spin-glass
phase at nonzero temperature [23,24], but the 2d model
orders only at T = 0 [25]. So the question arises whether
it is possible to detect this difference in the structures
of the ground-state landscape as well. Several results us-
ing direct calculations of ground states of 2d spin glasses
using approximation methods are known [26–31]. Also ex-
act ground-states up to L = 50 have been analyzed [25,
32,33]. For systems without periodic boundary-conditions
in all directions even L = 1800 is possible [34] but in all
these studies only one ground state per realization was
calculated, so it was not possible to study the structure
of degeneracy. First attempts of the calculation of many
different ground states can be found in [35,36].

In the present study many different and independent
true ground states of 2d ±J spin glasses are examined in
detail. A combination of a genetic algorithm [37,38] and
Cluster-Exact Approximation (CEA) [36] is used. Recently
it has been shown that this method is able to calculate true
ground states of spin glasses [24]. Since true ground states
are calculated directly, one does not encounter ergodic-
ity problems or critical slowing down like in algorithms
which base on Monte-Carlo methods. The ground-state
landscape is investigated and it is discussed whether the
MF or the DS picture describes its structure better. Also
the ground states are analyzed whether they are ordered
in an ultrametric fashion.

The paper is organized as follows: at first the algo-
rithm used here for the calculation of the ground states
is explained. Next all observables are defined. Then the
results are presented. In the last section a conclusion is
driven.

2 Algorithm

For readers not familiar with the calculation of spin-glass
ground states now a short introduction to the subject and
a description of the algorithm used here are given. A de-
tailed overview can be found in [39]

The concept of frustration [40] is important for un-
derstanding the behavior of ±J Ising spin glasses. The
simplest example of a frustrated system is a triple of spins
where all pairs are connected by antiferromagnetic bonds,
see Figure 1. A bond is called satisfied if it contributes
with a negative value to the total energy by choosing the
values of its adjacent spins properly. For the triangle it is
not possible to find a spin-configuration were all bonds are
satisfied. In general a system is frustrated if closed loops
of bonds exists, where the product of these bond-values is

?

Fig. 1. The simplest frustrated system: a triple of spins, each
pair of spins connected by antiferromagnetic bonds (dashed
lines). It is not possible to satisfy all bonds.

negative. For square and cubic systems the smallest closed
loops consist of four bonds. They are called (elementary)
plaquettes.

As we will see later the presence of frustration makes
the calculation of exact ground states of such systems com-
putationally hard. Only for the special case of the two-
dimensional system with periodic boundary conditions in
no more than one direction and without external field a
polynomial-time algorithm is known [41]. Now for the gen-
eral case three basic methods are briefly reviewed and the
largest system sizes which can be treated are given for
three-dimensional systems, the standard spin-glass model.

The simplest method works by enumerating all 2N

possible states and has obviously an exponential running
time. Even a system size of 43 is too large. The basic idea
of the so called Branch-and-Bound algorithm [42] is to
exclude the parts of the state space, where no low-lying
states can be found, so that the complete low-energy land-
scape of systems of size 43 can be calculated [43].

A more sophisticated method called Branch-and-Cut
[32,44] works by rewriting the quadratic energy function
as a linear function with an additional set of inequalities
which must hold for the feasible solutions. Since not all in-
equalities are known a priori the method iteratively solves
the linear problem, looks for inequalities which are vio-
lated, and adds them to the set until the solution is found.
Since the number of inequalities grows exponentially with
the system size the same holds for the computation time
of the algorithm. With Branch-and-Cut anyway small sys-
tems up to 83 are feasible.

The method used here is able to calculate true ground
states [24] up to size 143. For two-dimensional systems
sizes up to 502 can be treated. This is about the same size
Branch-and-Cut can solve, but in contrast to that method
the algorithm used here is able to calculate many indepen-
dent ground states for each realization of the randomness.
The method bases on a special genetic algorithm [37,38]
and on Cluster-Exact Approximation [36]. CEA is an opti-
mization method designed specially for spin glasses. Its ba-
sic idea is to transform the spin glass in a way that graph-
theoretical methods can be applied, which work only for
systems exhibiting no frustrations. Next a description of
the genetic CEA is given.

Genetic algorithms are biologically motivated.
An optimal solution is found by treating many instances
of the problem in parallel, keeping only better instances
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Fig. 2. Example of the Cluster-Exact Approximation method.
A part of a spin glass is shown. The circles represent lattice
sites/spins. Straight lines represent ferromagnetic bonds the
jagged lines antiferromagnetic interactions. The left part shows
the initial situation. The construction starts with the spin at
the center. The right part displays the final stage. The spins
which belong to the cluster carry a plus or minus sign which
indicates how each spin is transformed, so that only ferromag-
netic interactions remain inside the cluster. All other spins can-
not be added to the cluster because it is not possible to multiply
them by ±1 to make all adjacent bonds positive. Please note
that many other combinations of spins can be used to build a
cluster without frustration.

and replacing bad ones by new ones (survival of the
fittest). The genetic algorithm starts with an initial
population of Mi randomly initialized spin configurations
(= individuals), which are linearly arranged using an
array. The last one is also neighbor of the first one.
Then no ×Mi times two neighbors from the population
are taken (called parents) and two new configurations
called offspring are created. For that purpose the triadic
crossover is used which turned out to be very efficient for
spin glasses: a mask is used which is a third randomly
chosen (usually distant) member of the population with
a fraction of 0.1 of its spins reversed. In a first step
the offspring are created as copies of the parents. Then
those spins are selected, where the orientations of the
first parent and the mask agree [45]. The values of these
spins are swapped between the two offspring. Then a
mutation with a rate of pm is applied to each offspring,
i.e. a fraction pm of the spins is reversed.

Next for both offspring the energy is reduced by apply-
ing CEA: the method constructs iteratively and randomly
a non-frustrated cluster of spins. Spins adjacent to many
unsatisfied bonds are more likely to be added to the clus-
ter. During the construction of the cluster a local gauge-
transformation of the spin variables is applied so that all
interactions between cluster spins become ferromagnetic.

Figure 2 shows an example of how the construction of
the cluster works using a small spin-glass system. For 2d
±J spin glasses each cluster contains typically 70 percent
of all spins. The non-cluster spins act like local magnetic
fields on the cluster spins, so the ground state of the clus-
ter is not trivial. Since the cluster has only ferromagnetic
interactions, an energetic minimum state for its spins can
be calculated in polynomial time by using graph theoreti-
cal methods [46–48]: an equivalent network is constructed

algorithm genetic CEA({Jij}, Mi, no, pm, nmin)
begin

create Mi configurations randomly
while (Mi > 4) do
begin

for i = 1 to no ×Mi do
begin

select two neighbors
create two offspring using triadic crossover
do mutations with rate pm
for both offspring do
begin

for j = 1 to nmin do
begin

construct unfrustrated cluster of spins
construct equivalent network
calculate maximum flow
construct minimum cut
set new orientations of cluster spins

end
if offspring is not worse than related parent
then

replace parent with offspring
end

end
half population; Mi = Mi/2

end
return one configuration with lowest energy

end

Fig. 3. Genetic Cluster-exact Approximation.

[49], the maximum flow is calculated [50,51]1 and the spins
of the cluster are set to their orientations leading to a min-
imum in energy. This minimization step is performed nmin

times for each offspring.
Afterwards each offspring is compared with one of its

parents. The pairs are chosen in the way that the sum
of the phenotypic differences between them is minimal.
The phenotypic difference is defined here as the number
of spins where the two configurations differ. Each parent
is replaced if its energy is not lower (i.e. not better) than
the corresponding offspring. After this whole step is done
no×Mi times, the population is halved: from each pair of
neighbors the configuration which has the higher energy is
eliminated. If more than 4 individuals remain the process
is continued otherwise it is stopped and the best individual
is taken as result of the calculation.

The representation in Figure 3 summarizes the
algorithm.

The whole algorithm is performed nR times and all
configurations which exhibit the lowest energy are stored,
resulting in nG statistically independent ground-state con-
figurations.

1 Implementation details: we used Tarjan’s wave algorithm
together with the heuristic speed-ups of Träff. In the construc-
tion of the level graph we allowed not only edges (v,w) with
level(w) = level(v)+1, but also all edges (v, t) where t is the
sink. For this measure, we observed an additional speed-up of
roughly factor 2 for the systems we calculated.
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This algorithm was already applied to examine the
ground-state landscape of 3d spin glasses [19].

3 Observables

For a fixed realization J = {Jij} of the exchange interac-

tions and two replicas {σαi }, {σ
β
i }, the overlap [3] is defined

as

qαβ ≡
1

N

∑
i

σαi σ
β
i . (2)

The ground state of a given realization is characterized
by the probability density PJ (q). Averaging over the re-
alizations J , denoted by [ · ]av, results in (Z = number of
realizations)

P (q) ≡ [PJ (q)]av =
1

Z

∑
J

PJ(q). (3)

The probability densities are symmetric as no external
field is applied: PJ (q) = PJ(−q) and P (q) = P (−q).
Hence, only averages of |q|n are relevant:

|qJ |n ≡

∫ 1

−1

|q|nPJ (q)dq (4)

|q|n ≡

∫ 1

−1

|q|nP (q)dq. (5)

The Droplet model predicts that only two pure states ex-
ist, implying that P (q) converges for L → ∞ to P (q) =
1
2 (δ(q − qEA) + δ(q + qEA)), while in the MF picture the
density remains nonzero for a range −qEA ≤ q ≤ qEA
with peaks at ±qmax (0 < qmax ≤ qEA, qmax → qEA for
L→∞). Consequently the variance

σ2(|q|) ≡

∫ 1

−1

(|q| − |q|)2P (q) dq = |q|2 − |q|
2

(6)

stays finite for L → ∞ in the MF pictures (σ2(|q|) =
s∞ + s1/L

s2) [52], while σ2(|q|) ∼ L−y → 0 according
the DS approach. Here, y is the zero-temperature scaling
exponent [9], which is denoted as Θ in [11,12].

Another way of describing the finite-size behavior of
P (|q|) is to sum up the contributions from small overlap-
values q ≤ q0:

Xq0 ≡

∫ q0

−q0

P (q) dq. (7)

This value should converge to 0 in the DS picture as long
as q0 < qEA while it should stay non-zero for the MF
framework.

The overlap defined in (2) can be used to measure the
distance dαβ between two states:

dαβ ≡ 0.5(1− qαβ) (8)

with 0 ≤ dαβ ≤ 1. For three replicas α, β, γ the usual
triangular inequality reads dαβ ≤ dαγ + dγβ. Written in
terms of q it becomes

qαβ ≥ qαγ + qγβ − 1. (9)

In an ultrametric space [6] the triangular inequality
is replaced by a stronger one dαβ ≤ max(dαγ , dγβ) or
equivalently

qαβ ≥ min(qαγ , qγβ). (10)

An example of an ultrametric space is the set of leaves of
a binary tree: the distance between two leaves is defined
by the number of edges on a path between the leaves.

Let q1 ≤ q2 ≤ q3 be the overlaps qαβ , qαγ , qγβ ordered
according their sizes. By writing the smallest overlap on
the left side in equation (10), one realizes that two of the
overlaps must be equal and the third may be larger or the
same: q1 = q2 ≤ q3.

In a finite-size system this relation may be violated.
Here two ways are used of determining whether ground
states of realistic spin glasses become more and more ul-
trametric with increasing size L:

• The difference

δq ≡ q2 − q1 (11)

is calculated for all triplets. Because the influence of
the absolute size of the overlaps should be excluded
the third overlap is fixed: q3 = qfix. In practice only
overlap triples are used where q3 ∈ [qfix, qfix2] holds
to obtain sufficient statistics. With increasing size L
the distribution P (δq) should tend to a Dirac delta
function for an ultrametric system [8].
• If two overlaps are fixed (qαγ = qβγ = qfix, in practice
qαγ , qβγ ∈ [qfix, qfix2]), equation (9) implies q ≡ qαβ ≥
2qfix − 1 while ultrametricity implies q ≥ qfix which
is stronger if qfix < 1 [16]. The distribution P2−fix(q)
of the third overlap is used to characterize the ultra-
metricity of a system. Additionally the weighted frac-
tion of the distribution outside [qfix, qEA]

IL ≡

∫ qfix

−1

P2−fix(q)(q − qfix)2 dq (12)

+

∫ 1

qEA

P2−fix(q)(q − qEA)2 dq

(see [16]) should vanish for L → ∞ in an ultrametric
system.

4 Results

We used simulation parameters determined in the follow-
ing way: for each system size several different combina-
tions of the parameters Mi, no, nmin, pm were tested. For
the final parameter sets it is not possible to obtain lower
energies even by using parameters where the calculation
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Table 1. Simulation parameters: L = system size, Mi = ini-
tial size of population, no = average number of offspring per
configuration, nmin = number of CEA minimization steps per
offspring, τ = average computer time per ground state on a
80 MHz PPC601.

L Mi no nmin τ (sec)
5 8 1 1 0.02
10 16 1 2 0.4
14 16 4 2 3
20 32 8 2 30
32 128 8 2 780
40 512 8 2 5400

0 10 20 30 40
L

−1.42

−1.40

−1.38

−1.36

e

Fig. 4. Average ground-state energy of 2d ±J Ising spin glass
for linear dimensions 5 ≤ L ≤ 40 and FSS fit of form e(L) =
e∞ + e1L

−e2 resulting in e∞ = −1.4015(3).

consumes four times the computational effort. Using pa-
rameter sets chosen this way genetic CEA calculates true
ground states, as shown in [24]. Here a mutation rate of
pm = 0.05 and nR = 40 runs per realization were used for
all system sizes. Table 1 summarizes the parameters and
gives the typical computer time τ spent per ground state
computation on a 80 MHz PPC601. For each system size
ground states for 1000 different realizations of the disorder
were calculated. On average nG > 29 (not necessarily dif-
ferent) ground-state configurations were obtained for all
system sizes L using nR = 40 runs per realization.

At first the result for the ground-state energy as func-
tion of system size is presented in Figure 4. By perform-
ing a finite-size scaling (FSS) analysis using the function
e(L) = e∞ + e1L

−e2 a ground-state energy of the infi-
nite system of e∞ = −1.4015(3) is obtained (the expo-
nent of the decay is e2 = 2.2(1)). This is consistent with
an extrapolation from exact ground states of finite sys-
tems e∞ = −1.4015(8) [32] and with other former re-
sults from transfer-matrix calculations e∞ = −1.402(1)
[26], Monte-Carlo simulations e∞ = −1.407(8) [27], mul-
ticanonical simulations e∞ = −1.394(7) [29], genetic al-
gorithms e∞ = −1.400(5) [30], e∞ = −1.401(1) [31], a
special cluster-construction method e∞ = −1.402(2) [28]

0.0 0.5 1.0
q

0.0

1.0

2.0

3.0

P
L(

|q
|)

L=10
L=20
L=40

Fig. 5. Distribution of overlaps P (|q|) for ground states of 2d
±J Ising spin glass for L = 10, 20, 40. Only for large values
of q a difference is visible, so even for large systems there is a
finite probability of overlap q = 0. The lines are guides for the
eyes only.

and pure CEA e∞ = −1.400(5) [36]. The value presented
here has a higher accuracy than the former results.

Information about the ground-state landscape can be
extracted by evaluating the distribution of overlaps. In
Figure 5 P (|q|) is shown for three sample sizes L =
10, 20, 40. The distribution is averaged over the disorder,
where each realization enters the result with the same
weight, independent of the number of ground-state con-
figurations which were available. The distributions extent
over large intervals down to q = 0 which indicates the
existence of a complex ground-state landscape. For small
overlaps no large change is visible with increasing system
size, but the peak of the distributions located at larger
q-values shifts to smaller values.

The position qmax of this peak can be used to calculate
the Edwards-Anderson order parameter qEA which is the
maximum value of q where P (q) is nonzero in the infinite
system. Figure 6 shows the value of qmax as function of
L. Using a FSS fit with qmax(L) = qEA + q1L

−q2 a value
of qEA = 0.50(9) is obtained. The resulting function is
shown in the figure using a line.

So far we have seen that finite systems exhibit a com-
plex ground-state landscape. But to decide whether this
is true even for the infinite system one must investi-
gate the shape of P (|q|) as function of system size L. In
Figure 7 the variance (see Eq. (6)) of the distribution is
shown as function of L. By fitting the variance to a func-
tion of form σ2(L) = s∞+s1L

−s2 a value of s∞ = 0.004(8)
was obtained. This result is very close to zero. In the fig-
ure a fit with s∞ ≡ 0 is shown which looks very reason-
able. So it is possible that for L → ∞ the width of the
distribution shrinks to zero, which would mean that the
ground-state landscape is simple, as described by the DS
framework. This is different from the case of the three-
dimensional model, where the same procedure resulted in
s3d
∞ = 0.0608(6) [19].
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Fig. 6. Position of the peak of the distribution of overlaps
P (|q|) as function of system size for 5 ≤ L ≤ 40. A fit function
of the form qmax(L) = qEA + q1L

−q2 is given. The Edwards-
Anderson order parameter is obtained by L → ∞ as qEA =
0.50(9).

1 10 100
L

0.01

0.10

1.00

σ2 (|
q|

)

Fig. 7. Variances σ2(|q|) of the distributions of overlaps P (|q|)
as function of L for 5 ≤ L ≤ 40. For L→∞ the value converges
to a small value. A fit of the form s∞ + s1L

−s2 gives s∞ =
0.004(8). The straight line shows a fit with s∞ ≡ 0, which
should be true for a simple ground-state landscape.

However, the impression mediating from Figure 5 is
different: a long tail down to q = 0 persists for all sys-
tem sizes, so a width of zero for the infinite systems
seems unlikely. Consider a infinite system, where the
overlaps are distributed according a distribution with a
constant probability-density of 0.5 for q ≤ 0.5 and a delta-
function at q = 0.5 with weight 0.75: P (q) = 0.25Θ(0.5−
p) + 0.75δ(p − 0.5) (p ≥ 0), which seems plausible from
Figures 5 and 6. Then one obtains a variance σ2(|q|) =
0.017 which is very close to s∞ regarding the given error-
bar.

Since the result is not definite so far, next the con-
tribution of small overlap-values to P (|q|) is studied. The
fraction Xq0 (see def. (7)) of the distribution below a given
value q0 is displayed in Figure 8 using q0 ≡ 0.2 < 0.5 =

0 10 20 30 40
L

0.00

0.02

0.04

0.06

0.08

0.10

0.12

0.14

X
0.

2

Fig. 8. Fraction Xq0 of the distributions of overlaps P (|q|)
below q0 = 0.2 as function of L for 5 ≤ L ≤ 40. The value of
X0.2 does not decrease with growing L indicating a complex
ground-state landscape.

0.0 0.1 0.2 0.3 0.4 0.5
δq
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8.0

P
(δ

q)
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L=40
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0.13
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<
δq

>

Fig. 9. Distribution P (δq) for different system sizes L =
10, 20, 40 triplets of absolute values of overlaps from inde-
pendent triplets of ground states. Only triplets with q3 ∈
[0.25, 0.35] are used. For a infinite ultrametric system δq = 0
holds. The distribution turns out to be independent of the sys-
tem size indicating the absence ultrametricity for the ground
states. The inset shows the average value of δq as function of
system size L.

qEA as function of system size. As Xq0 seems to be in-
dependent of the system size it is reasonable to conclude
that the infinite system has a broad distribution.

So far the question whether the ground-state landscape
is complex has been addressed: a complex landscape for
the 2d ±J spin glass seems likely, but the results are less
definite than earlier results for the 3d model.

In the second part of this section it is studied whether
the ground states are ultrametrically ordered. For that
purpose for each realization all possible triplets of ground
states were chosen and the corresponding three overlaps
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Fig. 10. Distribution P2−fix(q) for different system sizes
L = 10, 20, 40 where q ∈ {q1, q2, q3} and q1 ≤ q2 ≤ q3 are
triplets of overlaps from independent triplets of ground states.
Only q-values of triplets are used where the two other over-
laps are within the interval [0.25, 0.35]. Then for an infinite
ultrametric system q > 0.25 should hold, while for a metric
system just q > −0.5 must hold. The small inset shows the
value integrated from −1 to 0.25. With increasing system size
the fraction of the distribution below 0.25 remains constant
although the distribution itself changes. The lines are guides
for the eyes only.

evaluated. The the quantity δq which is the difference be-
tween the two smaller overlap values was calculated (see
Eq. (11)) for all possible triplets with a constraint for the
largest of the three overlaps: q3 ∈ [3

5qEA − 0.05, 3
5qEA +

0.05] = [0.25, 0.35] (which implies δq < 0.35 as well). For
an ultrametric system the distribution of δq should be a
delta function. To improve the statistics we used the abso-
lute value of all overlaps. The distribution P (δq) is shown
in Figure 9 for L = 10, 20, 40. Each realization enters
the distribution with the same weight. One can see that
the distribution is independent of the system size. The
average value of δq as function of system size shown in the
inset. Hence, in the infinite system δq > 0 is possible. It
seems that the 2d ±J spin glass is not ultrametric, which
is in strong contrast to the result for the three-dimensional
model where P (δq) converges to a delta-function [22].

Additional information can be obtained by fixing
two of the three overlaps of a triplet. We took all
triplets where two arbitrary overlaps fell into the interval
[3
5qEA − 0.05, 3

5qEA + 0.05]. The resulting distributions
P2−fix(q) of the third remaining overlap is shown in
Figure 10 for L = 10, 20, 40. The triangular inequality
gives q > −0.5 whereas for an ultrametric system q > 0.25
must hold. We concentrate on the part of the distribution
with q < 0.25. Although the shape of the distribution
changes a little bit, the fraction of the overlaps forbidden
in an ultrametric system keeps fairly constant: the inset
shows the fraction I2−fix(0.25) of the distribution below
q = 0.25. Again reasonable evidence against an ultramet-
ric organization of the ground-states is found, but it is a
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Fig. 11. Integrated value IL of P2−fix(q) outside [qfix, qEA] as
function of system size L where q ∈ {q1, q2, q3} and q1 ≤ q2 ≤
q3 are triples of overlaps from independent triples of ground
states. Only q-values of triples where the two other overlaps are
within the interval [0.25, 0.35] are used. With increasing system
size the fraction of the distribution outside [0.25, 0.5] remains
mainly constant, which indicates that 2d ±J spin glasses are
not ultrametric.

little bit weaker, since very small values near q = −0.5
disappear for large systems.

To complete the comparison with [22], the distribution
P2−fix(q) integrated outside [0.25, 0.5] (see Def. of IL in
(12)) is shown in Figure 11. Again the result is different
from the case of the three-dimensional ±J spin glass: here
IL seems to remain non-zero for L→∞.

5 Conclusion

Many different and independent ground states for 2d ±J
spin glasses were calculated up to sizes L = 40 using the
genetic Cluster-Exact Approximation. From former calcu-
lations and comparison with exact results is it clear that
true ground states were obtained.

By evaluating the distribution of overlaps evidence for
a complex organization of the ground states is found, but
the evidence is weak, since it is not clear whether the
width of the distribution of overlaps scales to zero with
increasing system size. This is similar to the 3d case, but
there the evidence for the MF picture is stronger.

By studying triplets of ground states with one or two
of the three overlap values fixed convincing evidences are
found that the ground states of 2d ±J spin glasses are
organized not in an ultrametric manner. This is very dif-
ferent from the three-dimensional model. To our opin-
ion this may be connected with the fact that 3d realistic
spin glasses have an ordered phase at finite temperature
whereas the 2d model shows a spin-glass phase only at
T = 0.

Since only moderate system sizes up to N = 402 were
investigated, the behavior might change at larger sizes.
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But the finite-size behavior of the data presented here is
very smooth, thus, we believe that our results persist for
L→∞.

The results presented here were obtained for a bi-
modal distribution of the interactions. For spin glasses
with Gaussian distribution the ground state is unique, im-
plying that PL(|q)|) are both the same in the MF and DS
picture. The predictions are different at finite tempera-
ture. We expect the same behavior as for the ±J model if
one allows deviations of order one from the true ground-
state energy, but for that system type ground states are
much harder to calculate using the genetic CEA algo-
rithm.
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50. J.L. Träff, Eur. J. Oper. Res. 89, 564 (1996).
51. R.E. Tarjan, Data Structures and Network Algorithms, So-

ciety for industrial and applied mathematics (Philadelphia,
1983).

52. B.A. Berg, U.E. Hansmann, T. Celik, Phys. Rev. B 50,
16444 (1994).


